Volume 106, Issue 8 p. 1114-1127

The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder

Karl-Erik Andersson

Karl-Erik Andersson

Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA, *Department of Urology, Ludwig-Maximilians University Hospital, Munich, Germany, Department of Clinical and Experimental Pharmacology, Lund University, Department of Clinical Pharmacology, Linköping University, Sweden, § Urological Research Institute, Department of Urology, San Raffaele University, Milan, Italy

Search for more papers by this author
Christian Gratzke

Christian Gratzke

Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA, *Department of Urology, Ludwig-Maximilians University Hospital, Munich, Germany, Department of Clinical and Experimental Pharmacology, Lund University, Department of Clinical Pharmacology, Linköping University, Sweden, § Urological Research Institute, Department of Urology, San Raffaele University, Milan, Italy

Search for more papers by this author
Petter Hedlund

Petter Hedlund

Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA, *Department of Urology, Ludwig-Maximilians University Hospital, Munich, Germany, Department of Clinical and Experimental Pharmacology, Lund University, Department of Clinical Pharmacology, Linköping University, Sweden, § Urological Research Institute, Department of Urology, San Raffaele University, Milan, Italy

Search for more papers by this author
First published: 29 September 2010
Citations: 93
Karl-Erik Andersson, Institute for Regenerative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
e-mail: [email protected]

Abstract

• The pathophysiology of lower urinary tract symptoms (LUTS), detrusor overactivity (DO), and the overactive bladder (OAB) syndrome is multifactorial and remains poorly understood.

• The transient receptor potential (TRP) channel superfamily has been shown to be involved in nociception and mechanosensory transduction in various organ systems, and studies of the LUT have indicated that several TRP channels, including TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1, are expressed in the bladder, and may act as sensors of stretch and/or chemical irritation.

• However, the roles of these individual channels for normal LUT function and in LUTS/DO/OAB, have not been established.

• TRPV1 is the channel best investigated. It is widely distributed in LUT structures, but despite extensive information on morphology and function in animal models, the role of this channel in normal human bladder function is still controversial. Conversely, its role in the pathophysiology and treatment of particularly neurogenic DO is well established.

• TRPV1 is co-expressed with TRPA1, and TRPA1 is known to be present on capsaicin-sensitive primary sensory neurones. Activation of this channel can induce DO in animal models.

• TRPV4 is a Ca2+-permeable stretch-activated cation channel, involved in stretch-induced ATP release, and TRPV4-deficient mice exhibit abnormal frequencies of voiding and non-voiding contractions in cystometric experiments.

• TRPM8 is a cool receptor expressed in the urothelium and suburothelial sensory fibres. It has been implicated in the bladder-cooling reflex and in idiopathic DO.

• The occurrence of other members of the TRP superfamily in the LUT has been reported, but information on their effects on LUT functions is scarce. There seem to be several links between activation of different members of the TRP superfamily and LUTS/DO/OAB, and further exploration of the involvement of these channels in LUT function, normally and in dysfunction, may be rewarding.